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Abstract— Support Vector Machine (SVM) is a powerful technique for data classification. The SVM constructs an optimal separating 

hyper-plane as a decision surface, to divide the data points of different categories in the vector space. The Kernel functions are used to 

extend the concept of the optimal separating hyper-plane for the non-linearly separable cases so that the data can be linearly  

separable. The different kernel functions have different characteristics and hence the performance of SVM is highly influenced by the 

selection of kernel functions. Thus, despite its good theoretical foundation, one of the critical problems of the SVM is the selection of 

the appropriate kernel function in order to guarantee high accuracy of the classifier. This paper presents the classification framework, 

that uses SVM in the training phase and Mahalanobolis distance in the testing phase, in order to design a classifier which has low  

impact of kernel function on the classification accuracy.  The Mahalanobis distance is used to replace the optimal separating hyper-

plane as the classification decision making function in SVM. The proposed approach is referred to as Euclidean Distance towards the 

Center (EDC_SVM). This is because the Mahalanobis distance from a point to the mean of the group is also called as Euclidean  

distance towards the center of data set. We have tested the performance of EDC_SVM on several datasets. The experimental results 

show that the accuracy of the EDC_SVM classifier to have a low impact on the implementation of kernel functions. The proposed  

approach also achieved the drastic reduction in the classification time, as the classification of a new data point depends only on the 

mean of Support Vectors (SVs) of each category. 

 

Index Terms— Classification, Euclidean distance, Kernel function, Mahalanobis distance, optimal hyper-plane, Support Vector 

Machine, Support Vectors  

 

——————————      —————————— 

1 INTRODUCTION                                                                  

he classification is the task of assigning the class labels to 
data objects based on the relationship between the data 
items with a pre-defined class label. The classification 

techniques are helpful to learn a model from a set of training 
data and to classify a test data well into one of the classes. 
There are several well known classification algorithms like 
Decision Tree Induction, Bayesian Network, Neural Network, 
K-nearest neighbors and Support Vector Machine [1], [2], [3], 
and [4]. 

 
SVM have attracted a great deal of attention in the last decade 
and have actively been applied to various domain applica-
tions. SVMs are typically used for learning classification, re-
gression or ranking function and have been shown to be more 
accurate as compared to other classification models. SVM are 
based on statistical learning theory and structural risk minimi-
zation principal and have the aim of determining the location 
of decision boundaries also known as hyper-plane that pro-
duce the optimal separation of classes [5], [6], [7].  It has been 
shown in [4] that the hyper-plane that optimally separates the 
data is obtained by minimizing the following function: 

 

   
       (1) 

 
Subject to yi(w·xi+b) >= 1, ∀(xi,yi) ∈ D. 

 
This optimization is known as a convex quadratic program-
ming (QP) problem. The two planes parallel to the optimal 
separating hyper-plane and which passes through one or more 
points in the dataset are called boundary planes and the points 
on these boundary planes are called support vectors as shown 
in Fig 1. The support vectors are the most difficult tuples to 
classify and they give the most essential information regard-
ing classification. Other points can be ignored. 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Conventional SVM classifier with optimal separating hyper-plane 
and support vectors 

SVM can also be extended to learn non-linear decision func-
tions. This can be done by first projecting the input data onto a 
high-dimensional feature space using kernel functions and 
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formulating a linear classification problem in that feature 
space [6][7]. 
Using the kernel function, the optimization classification func-
tion in the high dimensional feature space turns to be: 
 
                      (2) 
 
The kernel function measures the similarity or distance be-
tween the two vectors. A kernel function K:  is 
valid if there is some feature mapping , such that 

                     (3) 

Thus, we can calculate the dot product of with-
out explicitly applying function  to input vector.  Here, we 
do not need to know how to map the sample information from 
original space to feature space [6], [7], [8].  

Generally SVM models perform better classification tasks with 
very complex boundaries when data points are mapped into a 
high dimensional feature space using kernel functions. Some 
of the common well-performing kernel functions in most cases 
are [8], [9], [10] and [11]: 

 Linear Kernel: k(xi, xj) = xi  · xj 

 Polynomial Kernels: k(xi, xj)=(γ(xi, xj) + r)d , r ≥0,  γ>0 
 Radial Basis Function Kernels (RBF): k(xi, xj)=exp(-||xi, 

xj ||
2 / 2 2) where σ > 0 

 Sigmoid Kernel: k(xi, xj) =tanh(α (xi, xj) + r), r ≥ 0 

 

Each of these kernel functions has their own characteristics. 
For example, linear and polynomial kernel function has global 

characteristic, means samples far from each other can affect the 

value of kernel function, while the RBF kernel function has local 

characteristic which only allows samples closed to each other to in-

fluence the value of kernel function [12].  A sigmoid kernel func-
tion is similar to a two-layer perceptron neural network while 
RBF kernel is similar to RBF neural network [6]. In case of RBF 
kernel function the feature space is an infinite dimensional 
while in case of polynomial it is finite. Polynomial kernel func-
tion produces a polynomial separating hyper-plane whereas 
Gaussian RBF kernel function produces a Gaussian separating 
hyper-plane. So, depending on the level of non-separability of 
data set, the kernel function should be chosen. With an appro-
priate selection and implementation of the kernel function in 
SVM, the trade-off between the classification complexity and 
classification error can be controlled.  
 
Therefore, to obtain the optimal performance of the SVM clas-
sification, it is necessary to select an appropriate kernel func-
tion. This means, the SVM classification accuracy is highly 
dependent on the selection of kernel function. This is due to 
the fact that the separability of data points is different in fea-
ture space of different kernel functions. Thus, one of the criti-
cal problems of the SVM classification is the selection of ap-
propriate kernel function, based on the type of datasets, in 
order to have high classification accuracy. It does not have 
generally an optimal kernel function which is able to guaran-
tee good classification performance on all types of datasets of 
varying characteristics. Also, each kernel function has parame-
ters whose value has to be changed and tuned according to the 
data set. For instance as we change the value of the degree m 

in polynomial kernel function, we move from a lower dimen-
sion to a higher dimension. In case of Gaussian kernel func-
tion, ρ decides the spread of the Gaussian. Choosing the op-
timal values of these parameters is also very important along 
with the selection of kernel function. In recent years, many 
research works have been carried out in order to solve the 
problem of automatically finding the most appropriate kernel 
function and parameters for the SVM in order to guarantee 
high accuracy of the classifier. 
 
In this work, an improved classification framework is pro-
posed, which we call as EDC_SVM. It uses Mahalanobis dis-
tance function to replace the optimal separating hyper-plane 
of the conventional SVM. The proposed framework first finds 
the support vectors of each category from the training data 
points and then the mean of support vectors of each category 
is calculated by mapping them into original vector space.  
During the classification phase, to classify a new data point, 
the distances between the new data point and the mean of 
support vectors of each category are calculated in the original 
vector space using the Mahalanobis distance function. The 
classification decision is then made based on the category of 
the mean of support vectors which has the lowest distance 
with the new data point, and this makes the classification de-
cision irrespective of the efficacy of hyper-plane formed by 
applying the particular kernel function.  

2 RELATED WORK 

Selection of kernel function and the parameters of the kernel 
function is the critical problem of SVM classification since its 
evaluation. Grid search algorithms are used to find the best 
combination of the SVM kernel and parameters, but these al-
gorithms are iterative and increase the computational cost of 
SVM during the training phase [13]. As a result, the efficiency 
of the SVM classifier has been severely degraded by having 
such methods in determining the appropriate combination of 
kernel and parameters. The evolutionary algorithm is pro-
posed to optimize SVM parameters, including kernel type, 
kernel parameters and upper bound C, which is based on the 
genetic algorithm [14]. This is an iterative process by repeating 
the crossover, mutation and selection procedures to produce 
the optimal set of parameters. The convergence speed depends 
on the crossover, mutation and selection functions in evolu-
tionary algorithm. 
 
The method which avoids the iterative process of evaluating 
the performance for all the parameter combination is proposed 
in [15]. In this approach, the kernel parameter selection is done 
using the distance between two classes (DBTC) in the feature 
space.. The optimal parameters are approximated accurately 
with sigmoid function. The computation complexity decreases 
significantly since training SVM and the test with all parame-
ters are avoided. Empirical comparisons demonstrated that 
the proposed method can choose the parameters precisely, 
and the computation time decreases dramatically. 
A method using the inter-cluster distances in the feature spac-
es to choose the kernel parameters for training the SVM mod-
els is proposed in [16]. Calculating such distance costs much 
less computation time than training the corresponding SVM 
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classifiers; thus the proper kernel parameters can be chosen 
much faster. With properly chosen distance indexes, the pro-
posed method performs stable with different sample sizes of 
the same problem. As a result, the time complexity of calculat-
ing the index is possible to be further reduced by the sub-
sampling strategy in practical usage, and thus the proposed 
method can work even the data size is large. However, the 
penalty parameter C is not incorporated into the proposed 
strategies in which the training time of SVM might be further 
minimized.  
Although very accurate, the speed of SVM classification de-
creases with increase in the number of support vectors. The 
method of reducing the number of support vectors through 
the application of Kernel PCA is described in [17]. This me-
thod is different from other proposed methods as the exact 
choice of the reduced support vectors is not important as long 
as the vectors span a fixed subspace. This method reduces the 
number of support vectors by up to 90% without any signifi-
cant degradation in performance. The advantage of the me-
thod is that it gives comparable reduction performance to oth-
er complicated methods based on quadratic programming and 
iterative kernel PCA.  
A new feature weight learning method for SVM classification 
is introduced in [18]. The basic idea of the method is to tune 
the parameters of the Gaussian ARD kernel via optimization 
of kernel polarization, and each learned parameter indicates 
the relative importance of the corresponding feature. Experi-
mental results on some real data sets showed that, this method 
leads to both an improvement of the classification accuracy 
and a reduction of the number of support vectors.  
A new text classification framework is based on the Euclidean 
distance function, which have low impact on the implementa-
tion of kernel function and soft margin parameter C is pre-
sented in [19]. The classification accuracy of the Euclidean-
SVM approach is relatively consistent with the implementa-
tion of different kernel functions and different values of para-
meter C, as compared to the conventional SVM. However, the 
classification phase of the Euclidean-SVM approach consumes 
a longer time as compared to the conventional SVM. Besides 
this, for certain classification tasks where the similarity be-
tween categories is high, the classification accuracy of the Euc-
lidean-SVM approach is lower than the accuracy of conven-
tional SVM approach. This is due to the fact that the Euclidean 
distance calculation which inherits the characteristic of nearest 
neighbor approach, may suffer from the curse of dimensionali-
ty, hence leads to the inefficient classification tasks.  
In high dimensional space the data becomes sparse and tradi-
tional indexing and algorithmic techniques fail from an effi-
ciency and or effectiveness perspective. Aggarwal et al. [20] 
viewed the dimensionality curse from the point of view of the 
distance metrics which are used to measure the similarity be-
tween the objects. They examine the behavior of the common-
ly used Lk norm and showed that the problem of meaningful-
ness in high dimensionality is sensitive to the value of k. They 
introduced fractional distance metrics as an extension of the Lk 
norm, and showed that fractional distance metric provides 
more meaningful results from the theoretical and empirical 
perspective. The result of this research has powerful impact on 
particular choice on distance metric. 

However, the choice of kernel function and parameter selec-
tion is still complex and difficult. Therefore, the goal of this 
paper is to propose the new framework for SVM, which has 
low impact on the selection and implementation of kernel 
function and parameters of kernel function. 

3 MAHALANOBIS DISTANCE FUNCTION 

The Mahalanobis distance is mainly used in classification 
problems, where there are several groups and the investiga-
tion concerns the affinities between groups. It is also used in 
pattern recognition or discriminant analysis, where the know-
ing the mean of groups (m) and covariance matrix ( , a new 
element (x) can be classified into one of these groups with as 
little chance of error as possible [21].  The Mahalanobis dis-
tance is defined as: 
 

   (4) 
 

The Mahalanobis distance as a minimum-distance classifier 
can be used as follows. Let m1, m2, …, mc be the means for the 
c classes, and let C1, C2, ... , Cc be the corresponding covariance 
matrices. A feature vector  can be classified by measuring the 
Mahalanobis distance from  to each of the means, and assign-
ing  to the class for which the Mahalanobis distance is mini-
mum as shown in Fig. 2. 

Fig. 2: Assigning class label to a point x, using Mahalanobis distance 

 
The use of the Mahalanobis metric as a distance measure is 
more advantageous compared to Euclidean distance measure, 
as it automatically accounts for the scaling of the coordinate 
axes, corrects for correlation between the different features, 
provides curved as well as linear decision boundaries and also 
works well for high dimensional data sets. 
The Mahalanobis distance measure is also valid to use if the 
data for each class is similarly distributed. If the variables in x 
for each group were scaled so that they had unit variances, 
then C would be the identity matrix and in mathematical 
terms, the Mahalanobis distance is equal to the Euclidean dis-
tance between the feature vector x and the group-mean vector 
m, which can also be referred as Euclidean distance towards 
the centre of data [22], [23]. We called this Euclidean distance 
towards the center of data as EDC and it can be defined as, 
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           (5) 
Since, the proposed research work uses scaled data, the varia-
tion of Mahalanobis distance i.e. EDC, is used and so the pro-
posed framework has been named as EDC_SVM. 

4 EDC_SVM CLASSIFICATION FRAMEWORK 

The proposed classification framework replaces the optimal 
separating hyper-plane of the conventional SVM by EDC dis-
tance function as the classification decision making function. 
We still need to construct the optimal separating hyper-plane 
to recognize the SVs, in the training phase of EDC_SVM. This 
can be done by mapping the training data points into the fea-
ture vector space and use the conventional SVM training algo-
rithm to identify the SVs of each category. 
After the SVs for each of the categories have been identified, 
they are mapped into the original vector space and mean of 
SVs of different categories are calculated. Once the mean of 
SVs of different categories are calculated, all the training data 
including SVs are eliminated. During the classification phase, 
a new unlabeled data point is mapped into the same original 
vector space, and the distances between the new data point 
and mean of SVs of each category are computed using the 
EDC distance function and the lowest distance is used to make 
the classification decision. 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3: Vector space of EDC_SVM classifier with the EDC distance func-
tion 

Fig. 3 represents how the classification of the new unlabeled 
data point can be done using EDC_SVM. Let the hollow circles 
represents the SVs of category 1 and dark circles represents 
the SVs of category 2. As illustrated in Error! Reference source 
not found., mean m1 and m2 is calculated for the support vec-
tors of category 1 and 2, respectively. After obtaining the 
mean, the EDC distance between the new data point 
represented by square and the mean m1 and m2 has been com-
puted. The EDC distance of new data point to mean of SVs of 
each category is,  
                      (6) 
The classification decision is then made based on the category 
which has the lowest distance.   
 
Fig. 4 illustrates the framework of the EDC_SVM classification 
approach. 
 

 

 

 
Fig. 4: EDC_SVM classification frame work 

 
EDC_SVM algorithm is illustrated as follow: 
 
Pre-processing Phase 

1. Transform all the data into numerical format, as SVM 
works only on numerical data.  

2. Libsvm framework is used for experimental purpose, 
so data need to be converted into format acceptable to 
Libsvm. It is represented as 1:1 3:2. 

Training Phase 
1. Map all the training data points into the vector space 

of a SVM. 
2. For each category, recognize and obtain the set of 

support vectors using SVM algorithm, and eliminate 
the rest of training data points which are not the sup-
port vectors. 

3. Calculate the means of SVs for each category by map-
ping them into original vector space. 

4. Eliminate SVs also. 
Testing Phase 

1. Map new unlabeled data point into the same original 
vector space. 

2. Use EDC distance function to calculate the distance 
between the new data point and the mean of each cat-
egory. 

3. Identify the category which has the lowest distance 
between its mean and the new data point. 

4. The classification result is generated based on the 
identified category for the new data point. 

 
By combining the SVM training algorithm and variation of the 
Mahalanobis distance function, EDC, to make the classification 
decision, the impact of kernel function on the classification 
accuracy of the conventional SVM can be minimized. This is 
due to the fact that the transformation of existing vector space 
into a higher dimensional feature space by the kernel func-
tions is not needed during the classification phase, as the sup-
port vectors, mean of the support vectors and data points to be 
classified are mapped into the same original vector space, and 
hence do not have great impact on the classification perfor-
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mance. As a result, we can obtain an enhanced EDC_SVM 
classifier with the accuracy comparable to the conventional 
SVM, while unaffected from the problem of determining the 
appropriate kernel functions. 
 
This approach also achieves drastic reduction in the classifica-
tion time. In conventional SVM, to find the class label of new 
data point, it is required to evaluate the kernel function be-
tween the new data point and each support vector. The num-
ber of SVs can still increase with the number of data point and 
hence the classification time. On the other hand, in EDC_SVM, 
to find the class label of new data point, it is required to eva-
luate distance between a point and only the mean of SVs of 
each category, which depends only on the number of catego-
ries. Therefore, it takes very less classification time compared 
to the conventional SVM.  
 
4.1 Complexity: 
 
Let n be the number of training points, s be the number of SVs 
and c be the number of categories in the data set, and each 
feature vector x is of m dimensional.  
 
Training time and space complexity:  
Standard SVM training has O(n)3 time and O(n)2 space com-
plexities. The SVM implementation used for the experiments 
is the Sequential Minimal Optimization (SMO) method, which 
is based on the concept of decomposition. The time complexity 
of SMO has been calculated empirically to O(n)2, while the 
space complexity will be reduced drastically, as no matrix 
computation is required. 
Since, the EDC_SVM uses SMO in training phase, the training 
time complexity of EDC_SVM is O(n)2. 
 
Classification time Complexity: 
The classification time complexity of EDC_SVM is depends 
only on the point to be classified and the mean of SVs of each 
category. The mean of SVs of each category is already calcu-
lated during the training phase. Since there are c categories, 
numbers of means are c.  
So, the classification time complexity for classification of n 
new points is O (n * c), which leads the classification complexi-
ty to O (n), as c<<n. 

5 EXPERIMENTAL RESULTS 

 
The proposed EDC_SVM classification framework has been 
tested and evaluated using four datasets of different character-
istics. Datasets considered are of increasing dimensions and 
also with increasing number of training and testing instances. 
Datasets available in this repository are collected from UCI 
and other very popular machine learning repository. This re-
search considered iris, a1a (adult) and wine dataset from 
LIBSVM [24] and DNA dataset1.  

5.1 Experimental Setup and Preliminaries: 

The experiments have been conducted by implementing the  

1 https://www.sgi.com/tech/mlc/db/ 

conventional SVM classification approach and EDC_SVM in-
dependently with four different kernel functions: Linear, Po-
lynomial, RBF and Sigmoid. Complexity or regularization pa-
rameter C controls the trade-off between maximizing the mar-
gin and minimizing the training error term, which is set to 1 
for all experiments. All the kernel functions are run with the 
default parameters, such as, Polynomial kernel with degree 
d=3, RBF kernel with =1/number of features and Sigmoid 
kernel with =1/number of features. Parameter tuning is not 
required, as with these default parameters EDC_SVM gives 
best result. The simulation results for conventional SVM are 
taken by running SMO algorithm using LIBSVM framework. 
The EDC_SVM are implemented by using the same version of 
SMO and LIBSVM. Using the training module of SMO, the set 
of SVs of each of the categories are identified and then we 
have developed an additional module to calculate the EDC 
distance between the new data point and mean of set of SVs of 
each category. The measures like accuracy, number of correct-
ly classified instances (CCI), precision, True Positive Rate 
(TPR) and False Positive Rate (FPR) are used to compare the 
performance of EDC_SVM with conventional SVM. 

5.2 Experiments on IRIS data: 

The very well known IRIS data set consists of 50 samples from 
each of three species of Iris (Iris setosa, Iris virginica and Iris 
versicolor). Four features were measured from each sample: 
the length and the width of the sepals and petals, in centime-
ters. All three species of Iris are separable. 
 
Table 1 show the experimental results of the conventional 
SVM and EDC_SVM classifier, which have been implemented 
with the different kernel functions and with the default values 
of parameters for iris dataset. 

 
As illustrated in Table 1, the performance of the conventional 
SVM is highly dependent on the implementation of the kernel 
functions. The linear, RBF and sigmoid kernel have contri-
buted to high classification accuracies, which is  97%. On the 
other hand, the polynomial kernel has poor performance on 
iris dataset, with an accuracy of 75.33%. This result into high 
variance of accuracies (118.655) across the different kernel 
functions. This shows that the wrong implementation of ker-
nel function leads to a poor performance of the SVM. In other 
words, the implementation of appropriate kernel is required 
to guarantee the good generalization ability for SVM classifier. 
As for the performance of EDC_SVM for on iris dataset, we 
have obtained classification accuracies between the range of 
93.33% to 94.66% with the implementation of different kernels 
and default kernel parameters. Table 1 also shows that the 
EDC_SVM has around 3% less accuracy for linear, RBF and 
sigmoid compared to conventional SVM, but the average ac-
curacy of EDC_SVM is higher than that of conventional SVM. 
The EDC_SVM also has very less variance (0.2948) among the 
accuracies for different kernel functions compared to conven-
tional SVM. Hence it has been concluded that EDC_SVM is 
unaffected from the implementation of kernel function in or-
der to obtain the good classification accuracy. 
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Table 1: Result of Conventional SVM and EDC_SVM with different kernels, on IRIS dataset 

  
Table 2: Result of Conventional SVM and EDC_SVM with different kernels, on Wine dataset 

 
 

Table 1 also shows that the number of SVs is same for both the 
approaches, but the classification time for EDC_SVM ap-
proach is less compared to conventional SVM, as it needs only 
the mean of SVs of each category, instead of SVs, for classifica-
tion of new data point. Testing time of classification phase for 
both approaches with the different kernel implementation is 
shown in Fig. 5. 

 

Fig. 5: Testing time for Conventional SVM and EDC_SVM for different 
kernels on IRIS dataset 

 

5.3 Experiments on Wine Dataset 

 
These data are the results of a chemical analysis of wines 
grown in the same region in Italy but derived from three dif-
ferent cultivars. The analysis determined 178 training samples 
with the quantities of 13 constituents found in each of the 
three types of wines.  
 
Table 2 shows the experimental results of the conventional 
SVM and EDC_SVM classifier, which have been implemented 
with the different kernel functions and with the default values 
of parameters for Wine dataset. As illustrated in Table 2, the 
performance of the conventional SVM with linear, RBF and 
sigmoid kernel have contributed to high classification accura-
cies, which is  99% while with polynomial kernel has contri-
buted to poor performance with an accuracy of 40.44%. This 
results into high value of variance of accuracies (859.357) for 
different kernel functions. This is due to the fact that, the 
wrong implementation of kernel function leads to a poor per-
formance of the SVM.  
 

Classification Algorithm Accuracy 
Training  

Time 
Testing 

time 
No. of 

SVs 
CCI Precision TPR FPR 

Average  
accuracy 

Variance of 
accuracies 

SVM (linear) 97.33 0.015 0.016 42 146 0.964 0.963 0.013 

91.66 118.655 
SVM (Polynomial) 75.33 0.015 0.016 122 113 0.85 0.746 0.122 

SVM (RBF) 97.33 0.015 0.016 58 146 0.964 0.963 0.013 

SVM (Sigmoid) 96.66 0.015 0.016 72 145 0.958 0.957 0.016 

                  
  

ECD_SVM (linear) 94 0.015 0 42 141 0.94 0.931 0.03 

94 0.295 
ECD_SVM (Polynomial) 93.33 0.015 0 122 140 0.925 0.924 0.033 

ECD_SVM (RBF) 94.66 0.015 0 58 142 0.939 0.937 0.027 

ECD_SVM (Sigmoid) 94 0.015 0 72 141 0.933 0.931 0.03 

Classification 
Algorithm 

Accuracy 
Training  

Time 
Testing  

time 
No. of 

SVs 
CCI Precision TPR FPR 

Average  
accuracy 

Variance of 
accuracies 

SVM(linear) 99.43 0.015 0.016 37 177 0.995 0.995 0.002 

84.41 859.357 
SVM(Polynomial) 40.44 0.016 0.016 169 72 0.43 0.406 0.396 

SVM(RBF) 99.44 0.015 0.016 80 177 0.995 0.955 0.002 

SVM(Sigmoid) 98.31 0 0.016 95 175 0.983 0.983 0.007 

                    

ECD_SVM(linear) 91.01 0 0 37 162 0.922 0.91 0.04 

93.54 4.305 
ECD_SVM(Polynomial) 96.06 0 0 169 171 0.961 0.961 0.02 

ECD_SVM(RBF) 93.82 0 0 80 167 0.945 0.938 0.027 

ECD_SVM(Sigmoid) 93.25 0 0 95 166 0.94 0.932 0.02 
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On the other hand, the performance of different kernel func-
tions with EDC_SVM on wine dataset is nearly consistent, 
with accuracy in the range of 91.01% to 96.06. This result into 
variation in accuracy for EDC_SVM is very less compared to 
conventional SVM as shown in Table 2. Though, the highest 
accuracy achieved by EDC_SVM is 3% less than the highest 
accuracy achieved by conventional SVM, but average accuracy 
of EDC_SVM is 9% more than SVM. Hence it has been con-
cluded that EDC_SVM is unaffected from the implementation 
of kernel function in order to obtain the good classification 
accuracy. 
Fig. 6 shows that the classification time is same for EDC_SVM 
with different kernel functions as it does not depend on the 
number of SVs. 
 

 

Fig. 6: Testing time for Conventional SVM and EDC_SVM for different 
kernels on Wine dataset 

5.4 Experiments on Adult Dataset 

This dataset predict whether income exceeds $50K/yr based 
on census data, also known as "Census Income" dataset.  The 
original Adult data set has 14 features, among which six are 
continuous and eight are categorical. In this data set, conti-
nuous features are discretized into quantiles, and each quan-
tile is represented by a binary feature. Also, a categorical fea-
ture with m categories is converted to m binary features. 
Therefore, the final data set consists of 123 features. The data-
set has 1605 training samples and 30956 testing samples. 

Table 3 shows the experimental results of the conventional 
SVM and EDC_SVM classifier, which have been implemented 
with the different kernel functions and with the default values 
of parameters for Adult dataset.  
 
Based on the Table 3, it can be observed that the implementa-
tion of the different kernel functions has affected the perfor-
mance of the conventional SVM on Adult dataset. As ob-
served, for the conventional SVM, the linear, RBF and sigmoid 
kernel have contributed to high classification accuracies, 
which is  83%. On the other hand, the polynomial kernel has 
poor performance on adult dataset, with an accuracy of 
75.94%.   
 
For Adult dataset, the performance of EDC_SVM is slightly 
affected by the implementation of kernel functions. The 

EDC_SVM has achieved high performance for polynomial, 
RBF and sigmoid kernel function with the consistent accura-
cies of  83.55%, while it showed less performance on linear 
kernel function with an accuracy of 77.4%. This is due to the 
fact that, categories in adult data set are very similar to each 
other. Hence it is difficult to make them separable with linear 
kernel. Though there is slight affection of implementation of 
kernel function in EDC_SVM, the average accuracy achieved 
by it is higher and the variance of accuracies among different 
kernel functions is lower than the conventional SVM, as 
shown in Table 3.  
 
As the number of testing instances is more compared to train-
ing instances, the testing time for conventional SVM is higher 
than the training time and it is also depends on the number of 
SVs. On the other hand both the times are nearly same in 
EDC_SVM, and classification time is order of 10 less than the 
conventional SVM, as the classification phase of EDC_SVM 
depends only on the mean of SVs of each category.  The com-
parison of classification time of is shown in Fig. 7. 

 
Fig. 7: Testing time for Conventional SVM and EDC_SVM for different 
kernel, on Adult dataset 

5.5 Experiments on DNA dataset 

The problem posed in this dataset is to recognize, given a se-
quence of DNA, the boundaries between exons (the parts of 
the DNA sequence retained after splicing) and introns (the 
parts of the DNA sequence that are spliced out). This problem 
consists of two subtasks: recognizing exon /intron boundaries 
(EI sites), and recognizing intron /exon boundaries (IE sites). 
Three classes (neither, EI and IE) are there [21]. The data set 
has 2000 training data points and 1186 testing data points and 
each data points has 180 attributes. 
 
Table 4 shows the experimental results of the conventional 
SVM and EDC_SVM classifier for DNA dataset. As illustrated 
in Table 4, for the conventional SVM, the linear, RBF and sig-
moid kernel have contributed to high classification accuracies, 
which is  94%. On the other hand, the polynomial kernel has 
poor performance on DNA dataset, with an accuracy of 
50.84%. This result into the variance of 461.45 in the classifica-
tion accuracies for different kernel functions. Based on the 
result, it can be observed that the implementation of the dif-
ferent kernel functions has affected the performance of the 
conventional SVM on DNA dataset. 
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Table 3: Result of Conventional SVM and EDC_SVM with different kernels, on Adult dataset 

 

 

 

 

 

 

 

 

 

 

Table 4: Result of Conventional SVM and EDC_SVM with different kernels, on DNA dataset 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
On the other hand, the EDC_SVM is not dependent of the im-
plementation of kernel functions. The EDC_SVM has achieved 
classification accuracies between the ranges of 88.76% to 
90.72%, with the implementation of different kernels. This ac-
curacy is slightly less than the highest accuracy obtained by 
conventional SVM, but the average accuracy of EDC_SVM is 
around 6% more than conventional SVM. The variance of ac-
curacies among different kernel functions is (0.904) very less 
compared to conventional SVM. In other words, EDC_SVM 
has better consistency in terms of accuracy with the imple-
mentation of different kernel function as compared to the con-
ventional SVM classifier.  
 
Fig. 8 also shows that, as with the other data set, for the DNA 
data set also the classification time is reduced by order of 10, 
even though the numbers of SVs are large. It can also be ob-
served that it takes same time for all the kernel functions, as it 
depends on number of category and not on SVs. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Testing time for Conventional SVM and EDC_SVM for different 
kernel on DNA dataset 

6 CONCLUSION 

The proposed approach EDC_SVM has the following advan-
tages compared with the conventional SVM. 

Classification 
Algorithm 

Accuracy 
Training  

Time 
Testing  
Time 

No. of 
SVs 

CCI Precision TPR FPR 
Average  
accuracy 

Variance of 
accuracies 

SVM (linear) 83.82 0.235 2.469 588 25947 0.833 0.838 0.32 

81.37 13.659 
SVM (Polynomial) 75.94 0.218 3.72 804 23510 0.577 0.76 0.76 

SVM (RBF) 83.59 0.25 4.026 754 25875 0.827 0.837 0.421 

SVM (Sigmoid) 82.12 0.297 5.094 790 25421 0.822 0.822 0.519 

                    

EDC_SVM (linear) 77.4 0.235 0.265 588 23959 0.798 0.774 0.302 

82.03 9.541 
EDC_SVM (Polynomial) 83.55 0.218 0.265 804 25865 0.829 0.836 0.335 

EDC_SVM (RBF) 83.66 0.25 0.265 754 25898 0.832 0.836 0.318 

EDC_SVM (Sigmoid) 83.52 0.297 0.265 790 25855 0.83 0.835 0.329 

Classification 
Algorithm 

Accuracy 
Training  

Time 
Testing  

time 
No. of 

SVs 
CCI Precision TPR FPR 

Average  
accuracy 

Variance of 
accuracies 

SVM (linear) 93.08 0.703 0.313 396 1104 0.94 0.94 0.048 

83.05 461.45 
SVM (Polynomial) 50.84 2.571 1.271 1734 603 0.259 0.51 0.51 

SVM (RBF) 94.52 1.404 0.891 1084 1121 0.956 0.955 0.029 

SVM (Sigmoid) 93.76 1.675 0.937 1181 1112 0.947 0.947 0.034 

                  
  

ECD_SVM (linear) 88.76 0.703 0.047 396 1053 0.9 0.898 0.057 

89.9 0.904 
ECD_SVM (Polynomial) 89.46 2.571 0.031 1734 1061 0.907 0.904 0.052 

ECD_SVM (RBF) 90.64 1.404 0.047 1084 1075 0.918 0.916 0.045 

ECD_SVM (Sigmoid) 90.72 1.675 0.047 1181 1076 0.919 0.917 0.044 
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 The performance of the EDC_SVM classification has 
low dependency on the implementation of kernel 
functions. 

 The accuracy of EDC_SVM is consistent with different 
kernel functions. 

 There is a loss of accuracy compared to conventional 
SVM, but the average accuracy of EDC_SVM is higher 
than the conventional SVM.  

 The classification time required by EDC_SVM is less 
as it required finding the distance between the new 
data point to be classified and the mean of the SVs of 
each category.  

 The classification time taken by EDC_SVM is same for 
all the four kernel functions considered, no matter 
how many SVs are, as it depends only on the number 
of categories, which is same for all kernels.  
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